Search results for "proteasome inhibitor"

showing 10 items of 49 documents

The emergence of drug resistance to targeted cancer therapies: Clinical evidence.

2019

For many decades classical anti-tumor therapies included chemotherapy, radiation and surgery; however, in the last two decades, following the identification of the genomic drivers and main hallmarks of cancer, the introduction of therapies that target specific tumor-promoting oncogenic or non-oncogenic pathways, has revolutionized cancer therapeutics. Despite the significant progress in cancer therapy, clinical oncologists are often facing the primary impediment of anticancer drug resistance, as many cancer patients display either intrinsic chemoresistance from the very beginning of the therapy or after initial responses and upon repeated drug treatment cycles, acquired drug resistance deve…

0301 basic medicineDrugCancer Researchmedicine.drug_classmedicine.medical_treatmentmedia_common.quotation_subjectTranslational researchApoptosisDrug resistanceMonoclonal antibodyBioinformatics03 medical and health sciences0302 clinical medicineNeoplasmsmedicineHumansPharmacology (medical)Hedgehog ProteinsEpigeneticsProtein Kinase Inhibitorsmedia_commonPharmacologyChemotherapybusiness.industryCancerImmunotherapyProtein-Tyrosine Kinasesmedicine.disease030104 developmental biologyInfectious DiseasesOncologyDrug Resistance Neoplasm030220 oncology & carcinogenesisbusinessProteasome InhibitorsDrug resistance updates : reviews and commentaries in antimicrobial and anticancer chemotherapy
researchProduct

Bortezomib potentiates the antitumor effect of tributyltin(IV) ferulate in colon cancer cells exacerbating ER stress and promoting apoptosis

2022

Organotin(IV) complexes represent promising drugs in medicinal chemistry for their potential use in cancer therapy. We recently reported synthesis and characterization of a new organotin(IV) complex of ferulic acid (FA), tributyltin(IV) ferulate (TBT-F), showing its antitumor action in colon cancer cells. Here we provide evidence that the efficacy of this compound is strongly potentiated by the proteasome inhibitor bortezomib (BTZ). While low concentrations of tributyltin(IV) ferulate alone promoted autophagy without reducing cell viability, combination of the two compounds markedly affected colon cancer cell viability, cell morphology and exasperated endoplasmic reticulum (ER) stress, as r…

Inorganic ChemistryMaterials ChemistryApoptosisProteasome inhibitorFerulic acidPhysical and Theoretical ChemistryER stressOrganotin(IV) complexes
researchProduct

Characterization of a mutant form of human apolipoprotein B (Thr26_Tyr27del) associated with familial hypobetalipoproteinemia

2016

We have previously identified a deletion mutant of human apoB [apoB (Thr26_Tyr27del)] in a subject with primary hypobetalipoproteinemia. The present study determined the effect of Thr26_Tyr27del mutation on apoB secretion using transfected McA-RH7777 cells. Transient or stable transfection of apoB-48 containing the Thr26_Tyr27del mutation showed drastically reduced secretion of the mutant as compared to wild-type apoB-48. No lipoproteins containing the mutant apoB-48 were secreted into the medium. Incubation of transfected cells in a lipid-rich medium in the presence of cycloheximide showed rapid turnover of cell-associated mutant apoB-48 as compared to that of wild-type apoB-48. Immunofluo…

0301 basic medicineSettore MED/09 - Medicina InternaTime FactorsApolipoprotein B-48 secretionApolipoprotein BMutantDNA Mutational AnalysisApolipoprotein B mutation Apolipoprotein B-48 secretion Hypobetalipoproteinemia Proteasomal degradation030204 cardiovascular system & hematologymedicine.disease_causeEndoplasmic ReticulumHypobetalipoproteinemiaschemistry.chemical_compound0302 clinical medicineProteasomal degradationProteolysiSequence DeletionMutationbiologyMedicine (all)TransfectionProteasome InhibitorPhenotypeBiochemistryApolipoprotein B-100lipids (amino acids peptides and proteins)Proteasome InhibitorsHumanHeterozygoteProteasome Endopeptidase ComplexTime FactorCycloheximideTransfectiondigestive systemCell LineDNA Mutational Analysi03 medical and health sciencesmedicineHumansSecretionGenetic Predisposition to DiseaseMolecular BiologyEndoplasmic reticulumnutritional and metabolic diseasesCell Biologymedicine.diseaseMolecular biology030104 developmental biologychemistryProteolysisbiology.proteinHypobetalipoproteinemiaApolipoprotein B mutationApolipoprotein B-48Hypobetalipoproteinemia
researchProduct

ID: 37

2015

During the early phase of human cytomegalovirus (HCMV) infection, the Interferon- γ -Inducible factor 16 (IFI16) behaves as a pattern recognition receptor (PRR) sensing viral DNA and triggering antiviral cytokine release. Later on, it restricts virus replication by down-regulating expression of viral genes committed to DNA synthesis including UL54 and UL44. These activities are modulated by viral proteins including pUL83, a tegument protein involved in viral evasion. Here, we demonstrate that pUL83 interacts with IFI16 relieving its inhibitory activity on UL54 gene transcription. We also establish that, starting from 48 h post-infection, IFI16 is stabilized and protected from degradation by…

Human cytomegalovirusDNA synthesisIFI16virusesImmunologyMutantHematologyBiologymedicine.diseaseBiochemistryMolecular biologyViral replicationInterferonGene expressionmedicineProteasome inhibitorImmunology and AllergyMolecular Biologymedicine.drugCytokine
researchProduct

Targeting B Cell Maturation Antigen (BCMA) in Multiple Myeloma: Potential Uses of BCMA-Based Immunotherapy

2018

The approval of the first two monoclonal antibodies targeting CD38 (daratumumab) and SLAMF7 (elotuzumab) in late 2015 for treating relapsed and refractory multiple myeloma (RRMM) was a critical advance for immunotherapies for multiple myeloma (MM). Importantly, the outcome of patients continues to improve with the incorporation of this new class of agents with current MM therapies. However, both antigens are also expressed on other normal tissues including hematopoietic lineages and immune effector cells, which may limit their long-term clinical use. B cell maturation antigen (BCMA), a transmembrane glycoprotein in the tumor necrosis factor receptor superfamily 17 (TNFRSF17), is expressed a…

lcsh:Immunologic diseases. Allergy0301 basic medicinemedicine.drug_classT-Lymphocytesmedicine.medical_treatmentImmunologyReceptors Antigen T-CellT-Cell Antigen Receptor Specificitymonoclonal antibody drug conjugateReviewAntibodies Monoclonal HumanizedMonoclonal antibodyImmunotherapy Adoptivebi-specific antibody03 medical and health sciences0302 clinical medicineAntigenSignaling Lymphocytic Activation Molecule FamilyAntibodies BispecificmedicineAnimalsHumansImmunology and AllergyElotuzumabbusiness.industrySLAMF7B-Cell Maturation AntigenAntibodies MonoclonalImmunotherapychimeric antigen receptor T cellADP-ribosyl Cyclase 1Chimeric antigen receptormultiple myelomaB-cell maturation antigen030104 developmental biologymonoclonal antibody030220 oncology & carcinogenesisProteasome inhibitorCancer researchImmunotherapytargeted immunotherapylcsh:RC581-607businessmedicine.drugFrontiers in Immunology
researchProduct

BAG3 Proteomic Signature under Proteostasis Stress

2020

The multifunctional HSP70 co-chaperone BAG3 (BCL-2-associated athanogene 3) represents a key player in the quality control of the cellular proteostasis network. In response to stress, BAG3 specifically targets aggregation-prone proteins to the perinuclear aggresome and promotes their degradation via BAG3-mediated selective macroautophagy. To adapt cellular homeostasis to stress, BAG3 modulates and functions in various cellular processes and signaling pathways. Noteworthy, dysfunction and deregulation of BAG3 and its pathway are pathophysiologically linked to myopathies, cancer, and neurodegenerative disorders. Here, we report a BAG3 proteomic signature under proteostasis stress. To elucidat…

ProteomicsautophagyCell signalingCellular homeostasisinteractomeBiologyBAG3InteractomeArticleStress PhysiologicalHumansddc:610Protein Interaction Mapsprotein quality controllcsh:QH301-705.5Adaptor Proteins Signal TransducingProto-Oncogene Proteins c-yesproteostasisBAG3AutophagyMolecular Sequence Annotationstress responseGeneral MedicineCell biologyGene OntologyHEK293 CellsAggresomeProteostasislcsh:Biology (General)Multivariate AnalysisSignal transductionApoptosis Regulatory ProteinsProteasome InhibitorsProtein BindingCells
researchProduct

Molecular mechanisms of carfilzomib-induced cardiotoxicity in mice and the emerging cardioprotective role of metformin

2019

AbstractCarfilzomib (Cfz), an irreversible proteasome inhibitor licensed for relapsed/refractory myeloma, is associated with cardiotoxicity in humans. We sought to establish the optimal protocol of Cfz-induced cardiac dysfunction, to investigate the underlying molecular-signaling and, based on the findings, to evaluate the cardioprotective potency of metformin (Met). Mice were randomized into protocols 1 and 2 (control and Cfz for 1 and 2 consecutive days, respectively); protocols 3 and 4 (control and alternate doses of Cfz for 6 and 14 days, respectively); protocols 5A and 5B (control and Cfz, intermittent doses on days 0, 1 [5A] and 0, 1, 7, and 8 [5B] for 13 days); protocols 6A and 6B (p…

MaleImmunologymTORC1AMP-Activated Protein Kinases030204 cardiovascular system & hematologyPharmacologyBiochemistryMice03 medical and health scienceschemistry.chemical_compound0302 clinical medicinemedicineAnimalsHypoglycemic AgentsProtein Phosphatase 2Protein kinase BCardiotoxicitybiologybusiness.industryBortezomibCell BiologyHematologyCarfilzomibCardiotoxicityMetforminMetforminMice Inbred C57BLNitric oxide synthasechemistry030220 oncology & carcinogenesisProteasome inhibitorbiology.proteinbusinessOligopeptidesSignal Transductionmedicine.drugBlood
researchProduct

Bortezomib: a new pro-apoptotic agent in cancer treatment.

2010

Bortezomib is a proteasome inhibitor. It targets the ubiquitin-proteasome pathway with subsequent inhibition of the degradation of proteins involved in cell cycle regulation and cancer cell survival. The best known molecular mechanism concerns the inhibition of IkappaB breakdown and the related stabilization of NFkappaB, thus preventing its translocation to the nucleus for the activation of downstream pathways. Bortezomib is the only drug in this class which has been approved for clinical use. It has shown an efficient antitumor effect in a phase III clinical trial (APEX) involving relapsed multiple myeloma patients. Response rate, time to progression and overall survival have been improved…

Cancer ResearchCell cycle checkpointSettore MED/06 - Oncologia MedicaAntineoplastic AgentsApoptosisPharmacologyDexamethasoneBortezomibMiceNeoplasmshemic and lymphatic diseasesAntineoplastic Combined Chemotherapy ProtocolsDrug DiscoverymedicineAnimalsHumansDexamethasoneMultiple myelomaPharmacologyproteasome inhibitionClinical Trials as TopicNeovascularization Pathologicbusiness.industryBortezomibCell CycleNF-kappa Bsolid tumorsmedicine.diseaseBoronic AcidsClinical trialBortezomib; solid tumors; proteasome inhibition.OncologyApoptosisPyrazinesCancer cellProteasome inhibitorCancer researchMultiple MyelomabusinessProteasome InhibitorsBortezomib solid tumors proteasome inhibitionmedicine.drug
researchProduct

Identification of a new series of amides as non-covalent proteasome inhibitors

2014

Proteasome inhibition has emerged as an important therapeutic strategy for the treatment of multiple myeloma (MM) and some forms of lymphoma, with potential application in other types of cancers. 20S proteasome consists of three different catalytic activities known as chymotrypsin-like (ChT-L), trypsin-like (T-L), and, post-glutamyl peptide hydrolyzing (PGPH) or caspase-like (C-L), which are located respectively on the β5, β2, and β1 subunits of each heptameric β rings. Currently a wide number of covalent proteasome inhibitors are reported in literature; however, the less widely investigated non-covalent inhibitors might be a promising alternative to employ in therapy, because of the lack o…

AmideMagnetic Resonance SpectroscopyStereochemistryProtein subunitPeptideMolecular Docking SimulationDrug DiscoverymedicineHumansProteasome inhibitorDocking studiesMultiple myelomaPharmacologychemistry.chemical_classificationOrganic ChemistryGeneral Medicinemedicine.diseaseAmidesYeastMolecular Docking SimulationchemistryProteasomeBiochemistryNon-covalent inhibitorDocking (molecular)Covalent bondProteasome Inhibitors
researchProduct

The proteasome inhibitor Bortezomib (Velcade) as potential inhibitor of estrogen receptor-positive breast cancer

2015

Around 70% of breast cancers express the estrogen receptor α (ERα) and depend on estrogen for growth, survival and disease progression. The presence of hormone sensitivity is usually associated with a favorable prognosis. Use of adjuvant anti-endocrine therapy has significantly decreased breast cancer mortality in patients with early-stage disease, and anti-endocrine therapy also plays a central role in the treatment of advanced stages. However a subset of hormone receptor-positive breast cancers do not benefit from anti-endocrine therapy, and nearly all hormone receptor-positive metastatic breast cancers ultimately develop resistance to anti-hormonal therapies. Despite new insights into me…

OncologyCancer Researchmedicine.medical_specialtyKinasebusiness.industryBortezomibmedicine.drug_classEstrogen receptormedicine.diseaseBreast cancerOncologyEstrogenInternal medicineProteasome inhibitormedicineskin and connective tissue diseasesbusinessProtein kinase BPI3K/AKT/mTOR pathwaymedicine.drugInternational Journal of Cancer
researchProduct